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Abstract. Many games display some kind of material symmetry. That
is, some sets of game elements can be exchanged for another set of game
elements, so that the resulting position will be equivalent to the original
one, no matter how the elements were arranged on the board. Material
symmetry is routinely used in card game engines when they normalize
their internal representation of the cards.
Other games such as chinese dark chess also feature some form of
material symmetry, but it is much less clear what the normal form of a
position should be. We propose a principled approach to detect material
symmetry. Our approach is generic and is based on solving multiple rel-
atively small sub-graph isomorphism problems. We show how it can be
applied to chinese dark chess, dominoes, and skat.
In the latter case, the mappings we obtain are equivalent to the ones
resulting from the standard normalization process. In the two former
cases, we show that the material symmetry allows for impressive savings
in memory requirements when building endgame tables. We also show
that those savings are relatively independent of the representation of the
tables.

1 Introduction

Retrograde analysis is a tool to build omniscient endgame databases. It has been
used in chess to build endgame databases of up to six pieces [19, 20, 14]. It has
also been used in a similar way to build endgame databases for checkers [17]
that have helped solving the game [18]. It has also been successfully used for
strongly solving the game of awari with a parallel implementation that evalu-
ated all the possible positions of the game [15]. Other games it has helped solving
are fanorona [16] and nine men’s morris [8]. Retrograde analysis has also
been applied to chinese chess [6], kriegspiel [4], and go [2].

An important limitation on the use of endgame tables is the size needed to
store all the computed results. Consequently, elaborate compression techniques
have been proposed and they have been instrumental in achieving some of the
aforementioned results [17]. An orthogonal approach to alleviate the memory
bottleneck is to use symmetries to avoid storing results that can be deduced
from already stored results by a symmetry argument. There are two kinds of
such symmetry arguments. Geometrical symmetry is the simplest case [5]: for
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instance if a chess position p does not feature any pawn and castling rights
have been lost then any combination of the following operations yields a position
equivalent to p. Flipping pieces along a vertical axis between the 4th and the
5th columns, flipping pieces along a horizontal axis between the 4th and the 5th
rows, or rotating the board. Material symmetry is typical from card games, in
particular when suits play an equivalent role. In most trick-taking games, for
instance, if a position p only contains Hearts, any position obtained by replacing
all cards with cards of same rank from an other suit is equivalent.

State-of-the-art engines for card games such as skat or bridge already use
material symmetry detection in their transposition and endgame tables. How-
ever, recognising the most general form of material symmetry is not as straight-
forward in some other games, notably chinese dark chess. In this paper, we
propose a principled framework to detect material symmetry and show how it
can be applied to three games: chinese dark chess, dominoes, and skat. At
the core of our method lies the sub-graph isomorphism problem which has been
extensively studied in computer science [21, 12].

Chinese dark chess is a popular game in Asia [3]. One of the key feature of
endgame databases in chinese dark chess is that some combinations of pieces
are equivalent. It means that in some endgames, a piece can be replaced by an-
other piece without changing the result of the endgame. Therefore an endgame
computed with the first piece can be used as is for the endgame positions contain-
ing the other piece in place of the first piece. This property reduces the number
of endgame databases that have to be computed. Using the relative ordering of
pieces instead of the exact values is similar to partition search in bridge that
store the relative ordering of cards in the transposition table instead of the exact
values [9].

Dominoes is also a popular game and in the endgame some of the values
of pieces can be replaced by other values without changing the outcome of the
game. We use this property to compute a reduced number of endgame tables for
the perfect information version of the game.

Skat is a popular game in Germany. Here again in the endgame, some cards
can be replaced with other cards. We present in this paper the memory reduction
that can be expected from using this property to compute complete information
endgame tables. Perfect information endgame tables are important in skat since
the Monte Carlo approach in Skat consists in solving many perfect information
versions of the current hand [11, 1, 13]. Using endgame tables enables to speedup
the solver.

The second section describes chinese dark chess, dominoes, and skat.
We then show in Section 3 how material interaction graphs can be constructed
for these domains. Section 4 recalls the principles of endgame table construction.
The fifth section gives experimental results, and the last section concludes.
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2 Domains addressed

2.1 Chinese dark chess

Chinese dark chess is a stochastic perfect information game that involves
two players on 4 × 8 rectangular board. Each player starts with one king, two
guards, two bishop, two knights, two rooks, two cannons and five pawns that are
the same pieces as in chinese chess. The pieces can be denoted with Chinese
characters or numbers as shown in Table 1. Pieces can move vertically and
horizontally from one square to an adjacent free square. Captures are done on
vertical and horizontal adjacent squares except for cannons that capture pieces
by jumping over another piece. Such jump is done over a piece (called the jumping
piece) and on a piece (called the target piece). Free spaces can stand between its
initial position and the jumping piece and between the jumping piece and the
target position. A piece can capture another piece according to the possibilities
mentioned in Table 1. Considering numbers representation, pieces can capture
lower or equal numbers (except the king that cannot capture any pawn, and
except the cannon that can capture any piece).

Table 1 summarizes alternative pieces’ names, each side’s icons and possible
captures. Column titled “Capture rule” lists the pieces that a piece can capture.

Table 1: Pieces representation and capture rules in chinese dark chess.
Names Representation Capture rule Note

King (K) kK , 7 7 all opponent piece except pawns

Guard (G) gG , 6 6 all inferior opponent pieces

Bishop (B) bB , 5 5 all inferior opponent pieces

Knight (N) nN , 4 4 all inferior opponent pieces

Rook (R) rR , 3 3 all inferior opponent pieces

Cannon (C)cC , 2 2 all opponent pieces jump capture

Pawn (P) pP , 1 1 opponent king and pawns

At the beginning, pieces are randomly placed on the board, facing down.
Typical positions thus allow 3 types of moves, flipping an unknown piece, moving
a piece to an adjacent free square, capturing an opponent piece.

If a player runs out of legal moves, possibly because all their pieces have been
captured, the game ends and that player loses the game. The game ends with a
draw if no capture is made for 40 plies.
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Fig. 1 shows the resulting board situation after the following 10 turns (Paren-
theses indicate revealed piece for flipping moves. Moving and capturing moves
indicate two coordinates. Unknown pieces are represented with white circles.):
b5(k) d8(P); d7(R) d4(p); c7(G) c6(c); c4(C) c4-c6; c5(p) c3(B);
b6(r) c3-c4; b6-c6 b7-b6; c2(C) c4-d4; b3(g) d4-c4; b3-c3 c4-d4;
It is now first player’s turn to play. First player is white. First player possi-
ble moves are: b5-b6; c3-b3; c3-c2; c3-d3; c5-c4. Second player possible
moves are : c2-c5; c6-c5; c6-b6; c6-c7; d4-c4; d7-c7.
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m m m m m

m m
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7
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5 3 1

Fig. 1: Sample chinese dark chess position after 10 turns of play.

Sometimes, the outcome of the game depends only on player’s turn, even if
a player has stronger piece, as shown in Fig. 2. If it is black to play, then white
wins (for example: b2-b1 c3-c2; b1-a1 c2-b2; a1-a2 b2-a2; white wins). If
it is white to play, then it is a draw game (for example : c3-c2 b2-b3; c2-b2
b3-c3; b2-b3 c3-c2; b3-c3 c2-b2... until draw).

2.2 The game of Dominoes

The game of dominoes is an ancient game, played with rectangular tiles called
dominoes. We do not know precisely when or where the game appeared, but it
is widely played all around the world.

The tiles of the game are rectangular and are divided into two sides. Each
side represents a number of points between 0 (empty) and 6, as shown in Fig. 3a.
They are called dominoes or simply tiles.

In this article, the tiles will be represented by the two numbers that are
written on it. For instance the domino in Fig. 3a is represented by (1, 5). The
tile (i, j) is the same as the tile (j, i) and only appears once in the set. Thus,
there are 28 tiles: (0, 0), (0, 1), . . . , (0, 6), (1, 1), (1, 2), . . . , (6, 6).

The board of the game of dominoes consists of a chain of dominoes already
laid down. At the beginning of the game, the first player puts his “strongest”
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Fig. 2: Sample chinese dark chess endgame position where the outcome de-
pends on who’s next turn to play.

domino (the one which has the most points) on the table and starts the chain.
Then, the players take turn laying down one tile they possess according to the
following matching constraint. To play a tile, it must have at least one side with
the same number of points of one of the tiles at the end of the chain on the table
(Fig. 3). If a player cannot play a tile, they draw a tile from the stock or pass
when there are no stock tiles remaining.

If a player has laid down all their tiles, or if the stock is empty and no player
can play, the game ends and the player with fewer points in hand wins.

While there are multi-player variants of the game of dominoes, we focus
in our experiments on the two-player case. Additionally, since we focus on the
endgames, we assume that the stock is empty and, as a consequence, that the
game is perfect information. Our method to detect material symmetry extends
easily to other settings.

•
•
•
•
•
•

(a) (1, 5) domino.

•
•
•
•
•
• •

•
•
•
•
•
•
•
•

(b) Chain of three tiles after a player has played (3, 2).

Fig. 3: A tile and a chain of matching tiles in dominoes.

2.3 Skat

Skat is a card game for three players. Skat is played with 32 cards using 8 ranks
(7–10, Jack, Queen, King, and Ace) and 4 suits (Club ♣, Spade ♠, Heart ♥, and
Diamond ♦). Each card is associated to a suit and a rank, for instance we have
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the Jack of Heart (♥J) or the Ten of Spade (♠T). A game of skat is divided into
a bidding and a playing phase. Before bidding, each player receives 10 cards and
the two remaining ones are placed on the center, and called the Skat.

Bidding The bidding system is quite complex and can lead to three different
types of game: suit game, grand game, or null game.1 In each type, the player
who made the highest bid gets the skat and plays against the two other ones.

In the suit game, a suit is chosen as trump. The order of cards is so: ♣J, ♠J,
♥J, ♦J, then the trump suit: A, T, K, Q, 9, 8, 7, then each of the remaining
suits, in the same order.

In the grand game, there is no trump suit, but the Jacks are still considered
as trumps. The order for the other cards are the same as in the suit game.

In the null game, there is no trump. The order of the cards is not the same
as in the other games: A, K, Q, J, T, 9, 8, 7.

Playing The playing part of the game is a succession of tricks. Each trick, the
player who won the previous trick plays first, and decides which suit is played
in the trick. The other players have to play this suit. If a player cannot play the
suit the first player played, he must play a trump. If he has neither the first suit
played nor trump, he can play any other suit.

If there is a trump in the trick, the highest trump wins the trick. If there
is not, the highest card of the suit the first player played wins. The player who
won the trick put the cards of the trick behind him and begins the next one.

Counting the points When all the cards have been played, each team count
their points. The team which got most of the points wins the round. The points
are distributed as follows. A: 11 points, T: 10 points, K: 4 points, Q: 3 points,
J: 2 points, 9,8, and 7: 0 points

3 Detecting material symmetry

Multiple games feature classes of endgames that are globally equivalent one to
another. For instance, in a trick-taking card game such as bridge, the class of
8 cards endgames where all cards are Hearts is equivalent to the class of 8 cards
endgames where all cards are Spades, and both are equivalent to that where all
cards are Clubs and to that with Diamonds. Indeed, we can exhibit a mapping
from one class C to an equivalent class C0 that will associate to each position
p ∈ C a position p0 ∈ C0 such that the score and optimal strategy in p can easily
be deduced from the score and optimal strategy in p0.

As a result, it is only necessary to build one endgame database for each
equivalence class of endgames, rather than one for each class of endgames. A
1 For more details, we refer to the rules from the International Skat Players Associa-
tion: http://www.ispaworld.org/downloads/ISkO-rules-2007-Canada.pdf.
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first approach to avoid building unnecessary endgame databases is to proceed to
some form of normalization. However, the normalization process to be adopted is
not always trivial. We propose here a principled method to find representatives
of the equivalence classes.

1234567

1234567

Fig. 4: Capture relationship in chinese dark chess. The allowed captures for
black were not represented so as to avoid cluttering the graph.

The basic idea is to represent interactions between pieces in a graph. The
interaction can be specific to a game. For example in chinese dark chess the
interaction is a capture whereas it is a connection in dominoes. Fig. 4 gives the
graph for the pieces of chinese dark chess. There is an arrow from one piece
to another if the first piece can capture the second one. Fig. 6 gives the graph
for dominoes and Fig. 5 gives the graph for skat assuming a suit game with
Clubs as trump.

♣7 ♣8 ♣9 ♣Q ♣K ♣T ♣A ♣J

♠7 ♠8 ♠9 ♠Q ♠K ♠T ♠A ♠J

♥7 ♥8 ♥9 ♥Q ♥K ♥T ♥A ♥J

♦7 ♦8 ♦9 ♦Q ♦K ♦T ♦A ♦J

Fig. 5: Trick winning relationship for cards in skat assuming Clubs (♣) are
trumps. To avoid cluttering, not all edges are drawn. The full graph is obtained
by taking the transitive closure of the graph represented.

Once the graph has been built for a game, it can be used to detect equiv-
alent endgames. The principle is to extract the sub-graph of the pieces of a
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Fig. 6: Playability relationship for tiles in dominoes. To avoid cluttering, not all
edges are drawn. The full graph is obtained by adding edges between every tile
in a given column as well as between every tile in a given row.

first endgame and to compare it with the sub-graph of the second endgame.
The comparison consists in finding if the two sub-graphs are isomorphic. Sub-
graph isomorphism is a hard problem, but for the games that we address a naive
algorithm is fast enough to compare sub-graphs of interest [21].

4 Endgame Tables

Retrograde analysis is completed in two steps. The first step consists in enumer-
ating all winning positions for one player. The second step consists in repeatedly
finding the new winning positions two moves away from existing ones. When
no new position is found the algorithm stops and the endgame table has been
computed. For each combination of pieces a different endgame table is computed.

There are multiple ways to generate the new winning positions two moves
away from already computed winning positions. A naive approach consists in
running through all possible positions and checking if they are two moves away
from already computed ones. A more elaborate approach consists in doing un-
moves from already computed winning positions to find a restricted set of can-
didate new winning positions.

5 Experiments

In this section we give experimental results for chinese dark chess and domi-
noes. We also experimented with skat but only for small numbers of cards
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because our generic implementation using sub-graph isomorphism is slower than
existing domain specific implementations, so these results are not included.

The hash code of a position has to be computed in two steps. First, obtain
the correspondence between the pieces and their representatives, then combine
the representative pieces with their locations into a hash code. In our implemen-
tation, the sub-graph isomorphism part is not optimized. However it is possible
to pre-compute all sub-graph isomorphims between tables and to have a fast
correspondence between a table and its representative.

5.1 Equivalence classes

Assume that the endgame table is split in multiple tables depending on the num-
ber of game elements (pieces/tiles/cards). Assume also that the resulting tables
are split further according to the sets of elements that constitute the positions.
Such a decomposition is natural and makes distributing the workload easier as
there is no dependency between different sets of elements if they have the same
number of elements [10]. Thus, each set of game elements has a corresponding
endgame table which can be stored in its own file.

We begin by comparing the number of possible files without using the re-
duction and the number of remaining files with our method. Material symmetry
allows us to reduce significantly the number of needed files. For instance, for
chinese dark chess with 4 elements, there are 1737 sets of elements that are
consistent with the rules of the game. However many such sets are equivalent,
and if we detect material symmetry, we can reduce the number of needed sets
down to 186, which represent a reduction factor of 9.34. Table 2 shows the num-
ber of sets, the number of sets needed when material symmetry is used, and the
resulting reduction factor for a given number of game elements in chinese dark
chess and dominoes.

Table 2: Total number of tables and number of representatives.
Game Elements Total Representatives Reduction factor

chinese
dark
chess

2 49 8 6.13
3 378 46 8.22
4 1737 186 9.34
5 5946 672 8.92
6 16,524 2240 7.38
7 39,022 6694 5.83
8 80,551 17,662 4.56

dominoes

3 4032 20 201.6
4 30,303 61 496.8
5 180,180 185 973.9
6 868,140 563 1542.0



10 Saffidine, Jouandeau, Buron, Cazenave

5.2 Perfect hashing representation

The reduction factors presented in Table 2 do not necessarily match with the
memory actually needed to store the endgame tables. Indeed, different sets of
pieces might lead to tables of different size and equivalence classes might have
different number of elements. For instance, in chinese dark chess the Kkm file
corresponds to 29,760 positions, while the kPP file corresponds only to 14,880
positions because the two pawns are indistinguishable. In this section, we assume
that we store the result for every position in the corresponding file using a perfect
hashing function, or index.

We did not use any advanced compression mechanism [17]. For instance,
chinese dark chess has 2 geometrical symmetries and we used 2 bits to encode
whether a position was won, lost, or draw. Therefore, for each file we need half
as many bits as the number of positions.

Table 3 shows the size needed for endgame tables with various number of
elements using a perfect hashing representation. In this table, we added the
different possible positions of each file for a given number of elements with and
without the reduction, and then calculated the real reduction factor. Notice that
the reduction factor in Table 3 are close to those in Table 2 but are not always
the same.

Table 3: Size of the endgame database with a perfect hashing representation.
Game Elements Total Representatives Reduction

Positions Memory Positions Memory factor

chinese
dark
chess

2 4.961×104 2.97 KB 7.936×103 496 B 6.13
3 9.999×106 610.3 KB 1.131×106 69.02 KB 8.84
4 1.140×109 67.92 MB 1.142×108 6.81 MB 9.92
5 9.036×1010 5.26 GB 1.013×1010 603.8 MB 8.92
6 5.440×1012 316.7 GB 8.002×1011 46.58 GB 6.80
7 2.601×1014 14.78 TB 5.247×1013 2.98 TB 4.96
8 1.014×1016 576.1 TB 2.756×1015 156.7 TB 3.68

dominoes

3 21,168 2.58 KB 92 11.50 B 230.09
4 550,368 67.18 KB 996 124.50 B 552.58
5 8,026,200 979.76 KB 7,854 981.75 B 1021.93
6 82,556,550 9.84 MB 53,790 6.57 KB 1541.99

5.3 Won positions

The following alternative representation for endgame tables can be used, we will
show that reduction factors are similar under this representation as well. For a
given set of pieces, store the list of won positions. We can detect that a position
is lost if the position with reversed colors is in the table. Finally, a position is
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a draw if it and the reverse position are not in table. Again, we can split the
endgame table according to the set of pieces that constitute it and use one file
for each possible set.

We have computed endgames tables with only won positions. Table 4 gives
the total number of won positions that would need to be stored for a given
number of game elements. It also displays the number of positions that need to
be stored if we use material symmetry and only store one representative file for
each equivalence class. The last column indicate the savings in terms of number
of stored positions when material symmetry is taken into account.

Table 4: Size of the endgame database when only storing won positions.
Game Elements Total Representatives Reduction factor

chinese
dark
chess

2 6448 744 8.67
3 1,650,763 171,516 9.62
4 156,204,805 15,418,377 10.13

dominoes
3 22,785 104 219.09
4 409,234 747 547.84
5 5,706,631 5,741 994.01

6 Conclusion

We have presented a general method based on sub-graph isomorphism that allows
detection material symmetries. We have shown that it could be applied to skat,
dominoes, and chinese dark chess. Detecting material symmetry makes it
easier to build larger endgame databases. While finding a representative for
positions that are equivalent under material symmetry (that is, defining a normal
form) for skat and dominoes is relatively easy, the chinese dark chess case is
more intricate as the relationship between the different pieces is more elaborate.
Our approach solves this problem in chinese dark chess and allows a reduction
factor between 5 and 10 in the size needed for storing the endgame tables.

Note that although we do not report any time measurement, a significant re-
duction factor can also be expected for the time needed to compute the endgame
tables. In our framework, we propose to store a file mapping sets of pieces to their
representative. This file is much smaller than the corresponding endgame tables.
Thus, the only runtime cost induced by our method is an additional indirection
when looking up a position in the database.

A generalisation of transposition tables has been proposed by Furtak and
Buro in order to regroup cases that have similar structures but different pay-
offs [7]. Determining to which extent the proposed method for detecting material
symmetry can be extended to account for payoff similarity seems to be a promis-
ing line for future work.
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